ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

УТВЕРЖДАЮ

Руковолитель ГЦИ СИ фГУП «ВНИИМС»

В.Н. Яншин

УСТАНОВКИ АВТОМАТИЧЕСКИЕ ТРЕХФАЗНЫЕ ДЛЯ ПОВЕРКИ СЧЕТЧИКОВ ЭЛЕКТРОЭНЕРГИИ НЕВА-Тест 3303

МЕТОДИКА ПОВЕРКИ ТАСВ.411722.002 ПМ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика предназначена для проведения поверки установок автоматических трёхфазных для поверки счётчиков электрической энергии HEBA-Тест 3303 (далее – установок), предназначенных для поверки электросчётчиков изготавливаемых в соответствии с ГОСТ Р 52320, ГОСТ Р 52323, ГОСТ Р 52425, ГОСТ Р 52321.

Методика устанавливает объем, условия поверки, методы и средства экспериментального исследования метрологических характеристик установок.

Установки имеют исполнения, отличающиеся классом точности 0,05 или 0,1 и исполнением: лабораторная в виде стенда с тремя местами для подключения счетчиков, вычислителями, оптическими головками, интерфейсом RS-485 и переносная в виде переносного блока с комплектом проводов для подключения счетчиков.

Поверка установок производится в месте эксплуатации в соответствии с настоящей методикой.

Межповерочный интервал - 2 года.

2. ОПЕРАЦИИ ПОВЕРКИ

- 2.1. При проведении поверки должны быть выполнены следующие операции:
- внешний осмотр (методика п.б.1.);
- проверка электрической прочности изоляции (методика п.6.2), осуществляется после ремонта;
- измерение сопротивления заземляющего устройства (методика п.6.3);
- опробование (методика п.6.4.);
- определение метрологических характеристик установки в целом (включая эталонный счётчик и источник фиктивной мощности) (методика п.6.5);
- определение коэффициента нелинейных искажений (методика п.б.б).

3. СРЕДСТВА ПОВЕРКИ

3.1. При проведении поверки должны быть применены следующие средства поверки:

Таблина 1

Номер	Наименование средств измерений и основные					
пункта	технические характеристики					
п. 5.1	Барометр БАМ-1. Диапазон измерения давления от 80 до 106 кПа. Погрешность					
	измерения \pm 0,2 кПа. Психрометр М-34. Диапазон измерения влажности от 10					
	до 100 % при температуре от минус 10 до 40 °C. Погрешность измерения влаж-					
	ности ± 3 %. Диапазон измерения температуры от минус 30 до 50 °C. Погреш-					
	ность измерения температуры ± 0,2 °C					
п. 6.2	Универсальная пробойная установка УПУ-10. Испытательное напряжение до 2					
	κB.					
	Погрешность установки напряжения $\pm 5\%$					
п.6.3	Прибор E6-15 (диапазон измерения $0,001-100$ Ом, погрешность не более $\pm 1,5\%$)					
п.п. 6.3, 6.4,	Прибор многофункциональный эталонный ЭНЕРГОМОНИТОР 3.1 класса точ-					
6.5, 6.6.	ности 0,02 (далее - Энергомонитор 3.1) Секундомер СОСпр-1, 0-30 ми					
	ц.д.0,1с					

ПРИМЕЧАНИЕ: Допускается использование других средств поверки, обеспечивающих требуемую точность.

- 3.2. Все применяемые средства измерений должны иметь действующие документы о поверке.
- 3.3. Работа со средствами измерений должна производиться в соответствии с их эксплуатационной документацией.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1. При поверке установки должны быть соблюдены требования ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.3-75, а также «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности при эксплуатации электроустановок потребителей».
- 4.2. Специалист, осуществляющий поверку установки, должен иметь квалификационную группу по электробезопасности не ниже третьей.

5. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

5.1. При проведении поверки должны соблюдаться следующие условия:

Таблина 2

1 иолици 2				
Наименование параметра	Диапазон значе- ний			
Питающее напряжение, В	220 ± 15			
Температура окружающего воздуха, ${}^{0}C$	23 ± 3			
Относительная влажность воздуха, %	от 30 до 80			
Атмосферное давление, кПа	от 84 до 106			
Частота сети, Гц	50 ± 0,5			

Форма кривой напряжения в питающей сети - синусоидальная с коэффициентом несинусоидальности не более 5 %.

Перед поверкой установку, с установленными на ней трёхфазными счётчиками непосредственного подключения с базовым током 5 или 10 A, необходимо прогреть в течении 10 минут при базовом токе и номинальном напряжении для установленных счётчиков.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

- 6.1. Внешний осмотр.
- 6.1.1. При проведении внешнего осмотра должно быть установлено соответствие установки следующим требованиям:
 - установка не должна иметь следов механических повреждений, нарушений лакокрасочных и гальванических покрытий.
 - зажимы установки должны быть укомплектованы, внешние резьбовые соединения не должны иметь повреждений;
 - наличие и правильность подключения заземления.
 - 6.2. Проверка электрической прочности изоляции.

Проверку производить при отключенном кабеле питания установки.

При проверке все контакты цепей тока, предназначенные для подключения счётчиков, выходные зажимы источников тока и напряжения, гальванически не связанные между собой должны быть соединены, цепи напряжения фазы 1, фазы 2, фазы 3 и нулевого провода должны быть соединены. Испытательное напряжение, подаваемое с УПУ-10, прикладывается между корпусом и соединёнными вместе цепями тока и напряжения. Подачу испытательного напряжения следует производить, начиная с нуля или со значения, не превышающего рабочего напряжения поверяемой цепи. Поднимать напряжение до испытательного следует плавно, погрешность измерения испытательного напряжения не должна превышать $\pm 5\%$.

Результат проверки считают положительным, если в течении 1 мин. изоляция выдерживает воздействие напряжения переменного тока 2,0 кВ частотой 50 Гц.

6.3. Измерение сопротивления заземляющего устройства.

Проверяется сопротивление цепи между корпусом установки и внутризаводской шиной заземления или зануления. Результат поверки считают положительным, если величина сопротивления, измеренная прибором E6-15, не превышает 1 Ом.

6.4. Опробование.

В соответствии с руководством по эксплуатации установить на установку трёхфазные счётчики непосредственного подключения, рассчитанные на максимальный ток 100 А. Испытательные выходы счётчиков подключить к импульсным входам вычислителей погрешности или к импульсным входам установки НЕВА-Тест 3303П. На компьютере, подключённом к установке, запустить ПО «Тест СОФТ» и создав проект для поверки конкретного типа счётчика начать поверку. Опробование производить путем визуального наблюдения за поверкой счетчиков электроэнергии, при максимальных и минимальных значениях входных сигналов, согласно техническим характеристикам поверяемых счетчиков. Во время проверки провести опробование работы оптических головок используя их в качестве датчиков импульсов выдаваемых поверяемыми счётчиками на оптический испытательный выход. Оптические головки подключаются к импульсным входам вычислителей погрешности или к импульсным входам установки НЕВА-Тест 3303П.

Результат проверки считают положительным, если на индикаторах вычислителей погрешности наблюдаются показания погрешности счетчиков в процентах, обеспечивается регулировка напряжения, тока и $\cos \phi$, а в окне программы, на мониторе компьютера, появляются значения измеренной погрешности поверяемых счётчиков.

- 6.5. Определение погрешности установок.
- 6.5.1. Определение погрешности установки по активной и реактивной энергии, току, напряжению и частоте, производить с помощью прибора «Энергомонитор 3.1К» при значениях информативных параметров входного сигнала, приведённых в таблице 3.

Схема подсоединения «Энергомонитора 3.1К» к установке лабораторного варианта исполнения приведена на рис. 1, переносного варианта на рис. 2 приложения 1.

6.5.1.1. Включить установку и определить относительную погрешность измерения активной энергии при четырёхпроводном подключении при значениях выходных сигналов установки приведённых в таблице 3. Значение тока должно находиться в указанном диапазоне. Погрешность измерения энергии установкой для лабораторного варианта исполнения считывать с дисплея «Энергомонитора 3.1К», для переносного — с дисплея установки. Время измерения погрешности должно быть не менее 1 минуты в каждой точке.

Результаты поверки считаются положительными, если значения погрешностей измерения энергии установкой НЕВА-Тест 3303Л и определённые «Энергомонитором 3.1К» или значения погрешности измерения энергии измеренные установкой НЕВА-Тест 3303П не превышают значений указанных в табл.3 для установок соответствующих классов точности.

Таблица 3 Пределы допускаемой относительной погрешности установок при измерении

активной энергии

Параметры выходных сигналов				Пределы допуска- Постоянная, имп./кВт·ч					
	тараметры выходпых сигналов			емой погрешности					
No				установок класса	образцового	«Энергомо-			
П.П.	U, B	I, A	cos φ	точности	счетчика	нитора			
				0,05 / 0,1, %	HY-5303C, **	3.1K»			
Поддиапазон 0,02А									
1	3x220/380	0,01-0,012	1	$\pm 0.1/ \pm 0.2$	$3.2x10^9$	1.2×10^9			
2	3x220/380	0,01-0,012	0,5 инд.	, i	J.2X10	1.2 X10			
Поддиапазон 0,05А									
3	3x220/380	0,02-0,025	1	$\pm 0.05/\pm 0.1$	1.6×10^9	1.2×10^9			
4	3x220/380	0,02-0,025	0,5 инд.	_ = 0,007 _ 0,1					
5	3x220/380	0,02-0,025	0,5 емк.	0.1.4	1.6×10^9	1.2×10^9			
	2 220/200	0.05.0.055	Поддиа	пазон 0,1А	0.108	(108			
6	3x220/380	0,05-0,055	<u>l</u>	$\pm 0.05/\pm 0.1$	$8x10^{8}$	6×10^8			
7	2220/200	0.1 0.11	11оддиап	азон 0,25 А		1			
- <u>7</u> - 8	3x220/380	0.1 - 0.11	<u>l</u>	$\pm 0.05/ \pm 0.1$	$3.2x10^8$	2.4×10^8			
8	3x220/380	0,23-0,25	Поддаж	 пазон 0,5А					
9	3x220/380	0,25-0,27	110ддиаг 1	1азон 0,5А					
10	3x220/380	0,25 - 0,27	0,5 инд.	$\pm 0.05/ \pm 0.1$	1.6×10^8	1.2×10^8			
11	3x220/380	0,25 - 0,27	0,5 инд.	2 0,037 2 0,1	1.0710				
11 3x220/380 0,23 - 0,27 0,3 емк. Поддиапазон 1 А									
12	3x57,7/100	0,50-0,55	1	1143011 1 71		6 x 10 ⁷			
13	3x57,7/100	0,50-0,55	0,5 инд.	$\pm 0.05/\pm 0.1$	$3.2x10^8$				
14	3x57,7/100	0,50-0,55	0,5 емк.	= 0,007 _ 0,0					
	51107,77100	0,000,000		лазон 2,5A					
15	3x220/380	1,0-1,1	1	,					
16	3x220/380	1,0-1,1	0,5 инд.		$3.2x10^7$	2.4 = 107			
17	3x220/380	2,3-2,5	0,5 инд.	$\pm 0.05/ \pm 0.1$		2.4×10^7			
18	3x220/380	2,3-2,5	0,5 емк.						
21	3x57,7/100	2,5-2,7	0,5 емк.			9.6×10^7			
				пазон 5А					
19	3x57,7/100	2,5-2,7	1		6.4×10^7	4.8×10^7			
20	3x57,7/100	2,5-2,7	0,5 инд.		0.4810	4.0 X1U			
22	3x220/380	4,8-5,0	1	$\pm 0,05/\pm 0,1$		1.2×10^7			
23	3x220/380	4,8-5,0	0,5 инд.		$1.6 \text{x} 10^7$				
24	3x220/380	4,8-5,0	0,5 емк.						
	T =		Поддиа	пазон 10А		T			
<u>25</u>	3x220/380	5,0-5,5	1	1007/:01	6	6 x10 ⁶			
26	3x220/380	5,0-5,5	0,5 инд.	$\pm 0.05/ \pm 0.1$	$8x10^{6}$				
27	3x220/380	5,0-5,5	0,5 емк.	27.1					
20	2 220/200	10.11	Поддиа	пазон 25А		1			
28	3x220/380	10-11	1	$\pm 0.05/\pm 0.1$	$3.2x10^6$	6×10^5			
29	3x220/380	10-11	0,5 инд.						
20	2,220/200	25.27	<u> 110ддиа</u>	пазон 50А	_				
30	3x220/380	25-27 25-27	0.5	$\pm 0.05/ \pm 0.1$	1.6×10^6	6×10^5			
31 3х220/380 25-27 0,5 инд. ± 0,05/± 0,1 1.0X10 0 X10 Поддиапазон 100А *									
32	3x220/380	95-100	тюддиаПа 1	asuh tuua '					
33	3x220/380 3x220/380	95-100	о,5 инд.	$\pm 0.05/ \pm 0.1$	8x10 ⁵	3×10^5			
34				± 0,03/ ± 0,1	OAIU				
34	3x220/380	95-100	0,5 емк.	1		l			

ПРИМЕЧАНИЕ:

- * в случае если поверяемые счётчики не рассчитаны на нагрузку в 100A, установить значение максимального тока этих счётчиков.
- ** постоянные образцового счётчика НҮ-5303С (лабораторный вариант исполнения) приведены на его верхней панели.
- 6.5.1.2. Определить погрешность установки при измерении активной энергии при трёхпроводном подключении в точках №№ 7, 17, 18, 19 по таблице 3.

Результаты поверки считаются положительными, если значения погрешностей установки не превышают значений указанных в табл.3 для установок соответствующих классов точности.

6.5.1.3. Определить погрешность установки при измерении активной энергии в однофазном режиме — ток и напряжение подаются на соответствующие цепи фазы А. Погрешность установки определять для каждой фазы в точках №№ 8, 22, 29 по таблице 3.

Результаты поверки считаются положительными, если значения погрешностей установок класса точности 0,05 или 0,1 не превышают 0,1 % или 0,2 % соответственно.

6.5.1.4. Переключить установку в режим измерения реактивной энергии. Определить погрешность установки при измерении реактивной энергии. Параметры выходных сигналов тока и напряжения установки приведены в таблице 4.

Результаты поверки считаются положительными, если значения погрешностей установки не превышают значений указанных в таблице 4 для установок соответствующих классов точности.

Таблица 4 Пределы допускаемой относительной погрешности установок при измерении

реактивной энергии

peaki	ивпои эп	Сріпп		T					
	Параметры выходных сигналов установки			Пределы допускае- мой погрешности	Постоянная, имп./кВт∙ч				
№ п.п.	U, B	I, A	sin φ	установок класса точности 0,05 / 0,1, %	образцового счетчика HY-5303C, **	«Энергомонитора 3.1К»			
Поддиапазон 0,02 А									
1	3x380	0,01-0,012	1	$\pm 0.2/ \pm 0.4$	$3.2x10^9$	1.2×10^9			
2	3x380	0,01-0,012	0,5 инд.	± 0,2/ ± 0,4	3.2X10	1.2 X10			
	Поддиапазон 0,25 А								
3	3x220	0,1-0,11	1	$\pm 0,1/\pm 0,2$	6.4×10^8	4.8×10^8			
	Поддиапазон 5 А								
4	3x100	2,5-2,7	1		_	_			
5	3x100	2,5-2,7	0,5 инд.	$\pm 0,1/\pm 0,2$	$6.4x10^{7}$	4.8×10^7			
6	3x100	2,5-2,7	0,5 емк.						
	Поддиапазон 50 А								
7	3x220	25-27	1	$\pm 0.1/\pm 0.2$	$3.2x10^6$	4.8×10^6			
8	3x220	25-27	0,5 инд.		J.2X10	7.0 XIU			

6.5.1.5. Определить погрешность измерения тока установкой при значениях тока и напряжения в п.п. 3, 8, 15, 28, 32 по таблице 3. Для определения погрешности установки при измерении тока следует считать показания образцового счётчика установки НЕВА-Тест 3303Л или показания с индикатора установки НЕВА-Тест 3303П и показания с «Энергомонитор 3.1К». Вычислить погрешность измерения тока для каждого значения по формуле:

$$\delta = \frac{I_{ycm} - I_O}{I_O} \cdot 100 \%,$$

Где I_{vcm} – значение тока, измеренное установкой, А;

 I_O –значение тока, измеренное «Энергомонитором 3.1», А.

Результаты поверки считают положительными, если вычисленные значения погрешностей не превышают 0,1 или 0,2 % для установок класса точности 0,05 или 0,1 соответственно.

6.5.1.6. Для определения погрешности установки при измерении напряжения следует считать показания образцового счётчика установки НЕВА-Тест 3303Л или показания с индикатора установки НЕВА-Тест 3303П и «Энергомонитора 3.1». Поверку проводить при подаче напряжения одновременно на три фазы, при значениях тока и соѕ ф, указанных в точках №№ 8, 19 и 32 по таблице 3. Вычислить погрешность установки при измерении напряжения для каждого значения по формуле:

$$\delta = \frac{U_{ycm.} - U_O}{U_O} \cdot 100 \%, \tag{2}$$

где U_{ycm} – значение напряжения, измеренное установкой, B;

 U_O –значение напряжения, измеренное «Энергомонитором 3.1», В.

Результаты поверки считают положительными, если вычисленные значения погрешностей не превышают 0,1 или 0,2 % для установок класса точности 0,05 или 0,1 соответственно

6.5.1.7. Для определения погрешности установки при измерении частоты следует считать показания образцового счётчика установки НЕВА-Тест 3303Л или показания с индикатора установки НЕВА-Тест 3303П и показания «Энергомонитор 3.1». Поверку проводить при значении частоты равном 45, 50 и 55 Гц, при значениях тока и соѕф, указанных в пунктах 15 и 32 по таблице 3 для каждого из значений.

Вычислить погрешность при измерении частоты для каждого значения по формуле:

$$\Delta = F_{vcm} - F_O \tag{3}$$

Где F_{ycm} – значение частоты, измеренное установкой, Гц;

 F_O –значение частоты, измеренное «Энергомонитором 3.1», Γ ц.

Результаты поверки считают положительными, если вычисленные значения погрешностей не превышают $\pm~0.02~\Gamma$ ц.

6.6. Определение коэффициента нелинейных искажений формы кривых напряжения и тока производится путем измерения коэффициента нелинейных искажений напряжения и тока при максимальном токе, номинальном напряжении и соѕф =1 с помощью «Энергомонитора 3.1». Проверка производится с установленными счетчиками. Для стенда с развязывающими трансформаторами поверку проводить поочередно на всех поверочных местах кроме первого.

Результаты поверки считают положительными, если коэффициент нелинейных искажений кривых напряжения и тока не превосходит:

- -по цепям напряжения (от 0,8 до 1,15 Uhom) \pm 1,0 %;
- -по цепям тока (от 0,05 Iном до Iмакс) \pm 1,0 %.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. Установку, прошедшую поверку с положительным результатом, признают годной.
- 7.2. Результаты поверки установки оформляют записью в формуляре. Запись заверяется клеймом государственного поверителя и выдается свидетельство о поверке с голографической наклейкой.
- 7.3. Установка, прошедшая поверку с отрицательным результатом, запрещается к применению и на нее выдается извещение о непригодности с указанием причин его выдачи.

Вед. инженер ФГУП «ВНИИМС»

Е.Н. Мартынова

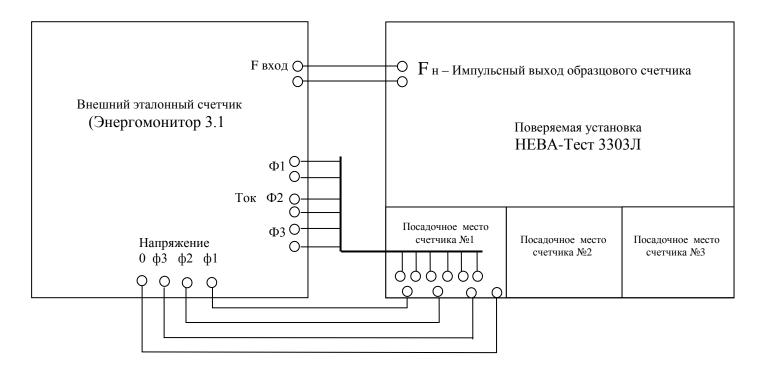


Рис 1. Условная схема подключение внешнего эталонного счетчика к трёхфазной установке HEBA-Тест 3303 (лабораторный вариант)

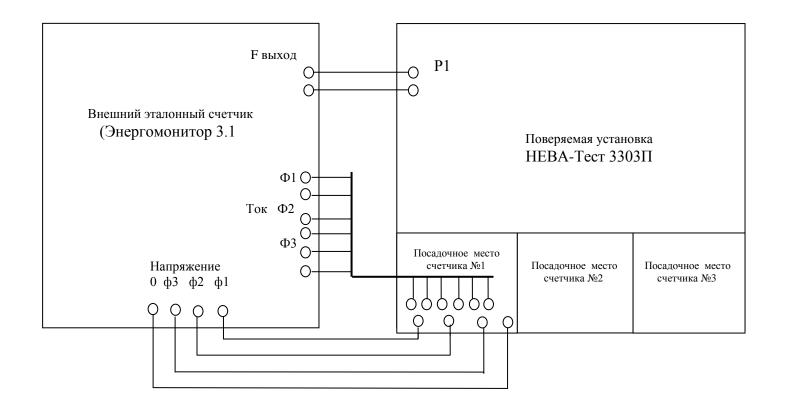


Рис 2. Условная схема подключение внешнего эталонного счетчика к трёхфазной установке HEBA-Тест 3303 (переносной вариант)